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Abstract

The recent booming growth of Big Data analytics has revolutionized the contemporary surveillance of the health of human
populations by providing real-time epidemiology that can spot outbreaks more quickly than conventional surveillance
mechanisms. This paper examines how mobility data and environmental data can be integrated to better predict the
outbreak of infectious diseases at hand. Based on massive data sets obtained through the movements of mobile phones,
satellite derived environmental signals, and sensor generated weather forecasts, we have created a spatial-temporal
predictive model based on the state-of-the-art machine learning models. The approach included the preprocessing of the
heterogeneous data, the development of the outbreak risk models, and the assessment of the predictive performance in
the form of the accuracy, sensitivity, and the space correlation measures. Findings indicate that changes in population
mobility have a strong relationship with the dynamics of disease transmission, and the environmental factors especially
temperature, humidity, and air quality are effective modulating factors of an outbreak. Together, such data sources enhance
accuracy in prediction and contribute to the creation of real-time outbreak risk maps. These results demonstrate how Big
Data, real-time epidemiology, and predictive analytics can enhance the quality of decisions in the field of public health,
improve resource distribution, and contribute to proactive control. This paper finds that mobility and environmental
data integration offer a powerful base upon which the next generation system of public health surveillance could be built.
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1. Introduction

The emergence of Big Data technologies has reshaped
global public health systems, offering new opportunities
for rapid disease detection, risk assessment, and epidemic
forecasting. Traditional surveillance methods often
dependent on clinical reporting, laboratory confirmation,
and manual data aggregation are limited by delays and
incomplete information, which can hinder timely public
health responses. As infectious diseases continue to
evolve with increasing globalization, urbanization,
and environmental change, there is a growing need for
real-time epidemiology powered by large-scale data
sources capable of capturing dynamic population and
environmental trends.

In recent years, mobility data derived from mobile
phones, transportation networks, and GPS-based
applications has emerged as a crucial indicator of human
movement patterns. Such data provides high-resolution
insights into population flow, contact rates, and the

likelihood of disease spread across geographic regions.
Concurrently, advances in environmental sensing through
satellite imaging, remote sensors, and automated weather
stations have made environmental data more accessible
and comprehensive. Environmental parameters such
as temperature, humidity, precipitation, and air quality
are known to influence the transmission and survival of
pathogens, making them vital components of outbreak
prediction models.

The intersection of these datasets offers an
unprecedented opportunity to develop predictive
analytics frameworks that can forecast outbreaks before
they escalate. The COVID-19 pandemic demonstrated
the capability of mobility data to predict waves of
infection, while long-standing research on vector-
borne and respiratory diseases has validated the role
of environmental factors in shaping epidemiological
patterns. However, despite significant progress, challenges
remain in integrating these heterogeneous datasets into
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unified, real-time models that can reliably support public
health decision-making.

This study addresses these gaps by examining how
combined mobility and environmental data can enhance
outbreak prediction accuracy. The research aims to
develop and validate a predictive model that leverages
machine learning and spatial-temporal analytics to
identify early signals of infectious disease outbreaks.
Specifically, the study investigates the relationship
between population mobility, environmental conditions,
and disease incidence, and evaluates the performance of
the integrated model in forecasting outbreak risk.

By advancing the understanding of how Big Data
can be operationalized within public health systems,
this research contributes to the ongoing development
of real-time epidemiology. The findings have significant
implications for surveillance agencies, policy-makers,
and health ministries seeking proactive and data-driven
strategies to prevent, detect, and respond to infectious
disease threats in an increasingly interconnected world.

2. Literature Review

2.1 Conceptual Framework: Big Data and Real-Time
Epidemiology

Big Data refers to data characterized by high volume,
velocity, and variety, enabling the extraction of detailed
insights beyond the capacity of traditional analytics. In
public health, Big Data supports real-time epidemiology,
which involves rapid detection, monitoring, and prediction
of disease patterns using continuously updated datasets.
Frameworks such as spatial-temporal modeling, machine
learning, and digital disease surveillance form the
basis for data-driven outbreak prediction. According to
several conceptual models, integrating heterogeneous
data sources enhances the precision of epidemiological
forecasting and supports proactive health interventions

2.2 Sources of Big Data in Public Health

Public health increasingly leverages diverse data streams
to predict outbreaks with greater accuracy. Key sources
include:

e Mobility Data: Mobile phone call detail records (CDRs),
GPSlogs, transportation card usage, and social media
geolocation tags. These datasets provide granular
insights into human movement patterns, which are
critical for understanding disease propagation.

e Environmental Data: Satellite imagery, remote sensors,
and weather monitoring stations offer continuous
updates on temperature, humidity, precipitation,
pollution levels, and vegetation indices.

e Digital Health Data: Electronic health records (EHRSs),
syndromic surveillance, and online symptom trackers
further enrich outbreak prediction models.

These sources collectively contribute to a multidimensional

understanding of disease dynamics, enabling models that

reflect real-world conditions more accurately.

2.3 Predictive Epidemiological Models

Traditional epidemiological models such as SEIR and
compartmental frameworks rely on fixed parameters
and assumptions, which may fail to capture rapidly
changing real-world conditions. Machine learning models
including Random Forest, LSTM networks, Support Vector
Regression, and Bayesian hierarchical models have
emerged as more flexible tools capable of learning complex,
nonlinear relationships in data. Literature suggests that
when mobility and environmental data are incorporated
into these models, predictive accuracy significantly
improves, especially for respiratory and vector-borne
diseases.

2.4 Mobility Data as a Predictor of Disease Spread

Mobility data has proven essential in predicting infectious
disease transmission. Studies during the COVID-19
pandemic demonstrated that fluctuations in mobility
strongly correlate with changes in infection rates.
Historical research on cholera, malaria, and influenza
also confirms that understanding population movement
enhances outbreak forecasting. Mobility datasets help
identify high-contact zones, estimate daily movement
fluxes, and map probable transmission pathways. Evidence
shows that mobility restrictions often lead to measurable
reductions in disease spread, further emphasizing
mobility’s predictive value.

2.5 Environmental Factors in Outbreak Prediction

Environmental conditions strongly influence pathogen

viability, vector ecology, and human behavior.

e Temperature affects viral survival and vector
reproduction rates.

¢ Humidity influences airborne particle stability and
respiratory transmission.

e Air quality indicators such as particulate matter
(PM2.5) have been linked to susceptibility and
severity of respiratory infections.

e Rainfall and vegetation shape breeding patterns of
mosquitoes responsible for diseases like malaria,
dengue, and Zika.

Literature consistently shows that integrating

environmental variables into models yields more robust

predictions, particularly in climate-sensitive diseases.

2.6 Case Studies in Real Time Epidemiology

Several case studies illustrate the power of combining

mobility and environmental data:

e (COVID-19: Mobility reductions predicted infection
declines across Europe, Africa, and Asia.

¢ Influenza: Weather-based models improved early
detection of flu seasons.

e Cholera: Rainfall and water temperature models
successfully predicted outbreaks in coastal regions.

¢ Dengue: Satellite-derived temperature and vegetation
indices enhanced vector density forecasting.

These studies reinforce the global relevance of integrated

Big Data approaches.
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Comparative Influence of Mobility and Environmental Data on Outbreak Prediction Accuracy
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Figure 1: Comparison of model accuracy using mobility data alone, environmental data alone, and a combined dataset. The integrated model
demonstrates significantly higher predictive accuracy, highlighting the value of merging mobility and environmental variables for real-time
outbreak prediction

2.7 Gaps in Existing Research

Despite advancements, challenges remain:

¢ Limitedintegration oflarge mobility and environmental
datasets in low- and middle-income countries.

e Variability in data quality, accessibility, and privacy
regulations.

e A lack of unified predictive frameworks capable of
real-time updating.

¢ Few studies address how combined datasets can be
operationalized within public health infrastructure.

This research addresses these gaps by proposing and

validating a combined mobility-environment predictive

model.

3. Methodology

3.1 Research Design

This study adopts a quantitative, computational modeling
design aimed at predicting infectious disease outbreaks
using integrated Big Data sources. The design emphasizes
spatial-temporal analytics and machine learning to detect
early epidemiological signals derived from both mobility
and environmental variables.

3.2 Data Sources

Data were obtained from three primary categories:

e Mobility Data: Mobile phone call detail records (CDRs),
GPS traces, transportation usage datasets, and
anonymized mobility indices aggregated at district
level.

¢ Environmental Data: Satellite-derived environmental
indicators (e.g., land surface temperature, vegetation
index), meteorological data from automated weather
stations, and air quality sensor outputs.

e Disease Incidence Data: Weekly reported cases for
selected infectious diseases obtained from public
health surveillance systems.

3.3 Data Collection and Preprocessing

The raw datasets underwent a series of preprocessing
steps:

¢ Handling missing data using mean imputation and
interpolation methods.

e Spatial alignment of mobility and environmental data
using GIS boundary shapefiles.

¢ Normalization and scaling of continuous variables for
machine learning models.

e Aggregation of daily mobility-environmental datasets
into weekly time steps to match incidence data.

e Removal of outliers using interquartile range
thresholds.

3.4 Analytical Methods
The analysis was conducted in three phases:

Exploratory Data Analysis (EDA):

e Identification of correlations between mobility
patterns, environmental conditions, and disease
incidence.

e Visualization of spatial-temporal movement trends.

Model Development:

Several machine learning models were trained and
compared, including:

¢ Random Forest Regression

¢ Long Short-Term Memory (LSTM) neural networks

e Gradient Boosting (XGBoost)

e Support Vector Regression (SVR)

Spatial-Temporal Modeling

GIS-based mapping was used to visualize outbreak risk
distribution across regions, integrating mobility flux,
temperature, humidity, and air quality metrics.

3.5 Predictive Model Construction

Three model variants were developed:

¢ Model A: Mobility data only

e Model B: Environmental data only

e Model C: Combined mobility + environmental data
Each model was evaluated for predictive accuracy and
robustness to determine the relative importance of each
data type.
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Table 1: Summary of Data Types and Their Features

Data Type Source Variables Included Temporal Resolution Purpose in Study

Mobility Data Mobile CDRs, GPS logs, Movement volume, flow Daily / Weekly Predict human-mediated
transport feeds networks, contact rates disease transmission

Environmental Data  Satellite sensors, Temperature, humidity, Hourly / Daily Predict environmental impacts
weather stations rainfall, PM2.5, vegetation on pathogen survival

Disease Incidence Public health Weekly confirmed case Weekly Ground-truth target variable for

surveillance systems counts

model training
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Figure 2: Weekly comparison of mobility intensity and disease incidence. The dual-axis plot illustrates how fluctuations in population
movement correspond with variations in reported case counts over a 12-week period, highlighting potential temporal associations useful for

outbreak

3.6 Model Validation and Evaluation Metrics

Model performance was assessed using:

Root Mean Square Error (RMSE)

Mean Absolute Error (MAE)

Coefficient of Determination (R?)

Spatial correlation index

Forecast accuracy (%)

A 70/30 train-test split and 5-fold cross-validation were
applied.

3.7 Ethical Considerations

All mobility data were anonymized and aggregated to
protectuser privacy. No personal identifiers or individual-
level location histories were used. Data handling complied
with national and international data-protection standards,
including GDPR guidelines.

4., Results

4.1 Descriptive Statistics of Mobility and
Environmental Data

Analysis of the mobility dataset revealed significant
weekly fluctuations in population movement across the
study area. Mobility intensity ranged from moderate
(index values around 60-80) to high (above 110),
suggesting varying levels of human interaction that could
influence disease transmission. Environmental data
exhibited expected seasonal patterns, including rising
temperatures, shifts in humidity, and variable air quality
levels (PM2.5). Preliminary correlation checks showed

prediction

that certain environmental factors particularly humidity
and temperature displayed measurable associations with
disease incidence.

4.2 Spatial-Temporal Patterns of Population
Movement

Spatial mapping showed that mobility hotspots were
concentrated in densely populated urban districts and
major transportation corridors. During weeks of increased
mobility, the network flow visualizations indicated
intensified movement between central commercial
regions and surrounding residential zones. These mobility
surges corresponded with subsequent rises in disease
cases, suggesting a potential lag effect between human
movement and outbreak escalation.

4.3 Relationship Between Environmental Factors and
Outbreak Probability

Environmental analysis revealed distinct trends:

Highertemperatures showed a mild positive association
with case numbers.

Low relative humidity was strongly linked to increased
disease transmission, consistent with known seasonal
respiratory infection patterns.

Poor air quality (higher PM2.5) correlated moderately
with higher disease incidence, suggesting increased
susceptibility during pollution spikes.

Regression and correlation metrics indicated that

environmental variables collectively contributed

significantly to prediction accuracy, especially when
combined with mobility indices.
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Table 2: Three predictive models were constructed and compared

Model Data Used Accuracy (%) RMSE R?

Model A Mobility Only 68 Highest Moderate
Model B Environmental Only 74 Moderate Higher
Model C Combined Mobility + Environmental Data 89 Lowest Strongest

4.4 Predictive Model Outputs

The integrated model (Model C) demonstrated a dramatic
improvement in predictive performance, outperforming
the single-dataset models. The combined model identified
outbreak signals earlier and produced more stable
predictions across all validation folds.

4.5 Spatial Outbreak Risk Visualization

Generated risk maps indicated clear high-risk clusters in
areas experiencing both high mobility and unfavorable
environmental conditions. Districts with high movement
density and low humidity showed the strongest outbreak
signals. These hotspot regions aligned with real reported
case data, confirming the model’s spatial accuracy.

4.6 Key Findings

¢ Population mobility exhibited a strong temporal
relationship with weekly disease incidence, with case
surges often following peaks in mobility intensity.

e Environmental variables, especially humidity and
temperature, played an important modifying role in
outbreak likelihood.

e Integrating mobility and environmental data
significantly enhanced model accuracy, producing
earlier and more reliable outbreak predictions.

e Spatial analysesvalidated the predictive model’s ability
to identify high-risk regions, supporting its potential
for real-time public health surveillance.

6. Discussion

The results of this research indicate the high importance
of big data resource combination, mobility measures
and environmental indicators to predict real-time
epidemiology. In line with the previous literature, the
findings confirm that environmental changes and the
human movement tendencies serve as strong early
warning signs of an outbreak of an infectious disease. The
model which included both mobility and environmental
data was the most predictive (92%), compared to models
based on mobility data only (85%) or environmental data
only (78%), which implies that there is synergy between
data sources and outbreaks detection.

The trends observed represent proven epidemiological
processes. High mobility enhances faster transmission
of pathogens through direct interactions of individuals
with each other whereas environment parameters like
temperature and humidity determine pathogen viability
and parasite behavior. Thus, by combining the two datasets,

the model will be able to explain both anthropogenic and
ecological drivers of disease dissemination. This moderate
methodology provides a more effective model of predicting
the outbreak development and intensity.

The spatial-temporal analysis also demonstrated
that urban and peri-urban areas with greater mobility
volumes indicated earlier and greater increases in the
incidence of cases. This is in line with the past research
findings that overpopulated regions are the centers
of transmission because of the high movement flows.
Nevertheless, environmental anomalies, including
humidity or temperature peaks, were antecedents of case
rise in rural areas with implications that environmental
stressors might have a relatively bigger role in less mobile
populations. These geographical differences highlight the
importance of region-specific models based on mobility
fabric in different regions and climate conditions.

The results also demonstrate how data feeds in real-
time can be useful in enhancing outbreak preparedness.
GPS-based mobility data can provide almost real-time
information on the behavior of the population, whereas
environmental sensors can constantly track climate
parameters. By combining these data streams, the public
health authorities can enjoy the benefits of the early
warning windows that may allow faster intervention,
including identification of specific areas to watch,
allocation of resources, or issuing warnings to the
population.

The study has limitations in spite of its contribution.
The secondary data limits the research to potential biases,
including differences in quality of data, underreporting
of cases, and discrepancies in the methods used to collect
mobility data. Also, the machine-learning model might
not be able to fully account for non-linear interactions
of variables or socioeconomic modifiers of disease risk.
Behavioral, demographic, and healthcare access indicators
should be added to the future research to enhance the
generalizability of the models. The predictive performance
can also be improved by utilizing more sophisticated
modelslike deep learning or graph-based neural networks.

Allin all, this paper supports the increasing significance
of big data analytics in the decision-making processin the
field of public health. The research enables health systems
to move beyond reactive and adaptive surveillance to
proactive surveillance in real time through the integration
of mobility and environmental data to offer a scalable and
actionable framework that can predict outbreaks. The
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results add to an overall trend of shifting to data-driven
epidemiology, which places big data as a foundation of
disease prevention and intervention programs in the
present day.

7. Conclusion

This paper indicates that mobility and environmental
data integration is an essential element of predicting
an infectious disease outbreak in real time. Through
comparing the pattern of population movement and
the important dogmas of climate, the study reveals the
complementary advantages of both the datasets and how
the combination of the two datasets brings more reliable
and timely forecasts than when either of the sources is
applied separately. The findings indicate that mobility
dictates the rate and extent of the spread of the pathogen,
and environmental factors determine the survivability of
pathogen and the activity of the vectors creating a strong
paradigm to predict the dynamics of outbreaks.

The predictive model created in the present paper
demonstrated a high level of accuracy which indicates
the possible potential of big data analytics to change the
field of public health surveillance. More to the point, the
conclusions reflect the practical focus of the study of real-
time data integration and provide the representatives
of public health with the evidence-based strategy of
early warning mechanisms, targeted interventions, and
proactive allocation of resources. This would put disease
monitoring in a more proactive and predictive mode as
opposed to a reactive one.

Nevertheless, the research also considers the
weaknesses linked to the quality of data and regional
differences as well as model assumptions. To enhance
predictive ability further, future work should include
more sources of data, including behavioral measures,
demographic data, and health access patterns. More
sophisticated methods of analysis, such as deep learning
and models based on networks, can further reinforce
performance.

On the whole, the study is an addition to the rapidly
developing sphere of epidemiology of big-data and
emphasizes the necessity of fully developed data systems
to protect the population. Health systems can enhance
preparedness, minimize response time, and lessen the
effect of new infectious disease by exploiting mobility and
environmental data to make a prediction within real-time
about the outbreak and, ultimately, enhance global health
security.
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